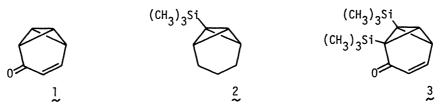
SYNTHESIS AND PROPERTIES OF 1,2-BIS(TRIMETHYLSILYL)TRICYCLO[4.1.0.0^{2,7}]HEPT-4-EN-3-ONE. A NOVEL SUBSTITUTED TROPOVALENE

Yoshikazu SUGIHARA, Noritsugu MOROKOSHI, and Ichiro MURATA*


Department of Chemistry, Faculty of Science, Osaka University,

Toyonaka, Osaka 560

1,2-Bis(trimethylsilyl)tricyclo[$4.1.0.0^2$, 7]hept-4-en-3-one (3) has been synthesized from 4-acetoxy-2-cyclopenten-1-one and bis(trimethylsilyl)acetylene. Photochemical and transition metal promoted isomerizations of 3 are described.

A valence isomer of tropone bearing bicyclo[1.1.0]butane system such as tricyclo[4.1.0.0 2 , 7]-hept-4-en-3-one (tropovalene) (]) is of interest not only because of its unique structure but also because of its reactivity. Recently 1 has been synthesized by Prinzbach et al. through the thermolysis of 7-quadricyclanone. 1) Subsequently we have independently reported the alternative synthesis of 1 in good overall yield from 4-acetoxybicyclo[3.2.0]hept-6-en-2-one utilizing the oxa-di- π -methane rearrangement, and have suggested the existence of a substantial interaction between bicyclo[1.1.0]butane and enone moieties in 1.2)

Paquette et al.³⁾ have recently demonstrated that trimethylsilyl substitution on tricyclo- $[4.1.0.0^2, ^7]$ heptane (2) caused marked effect on their spectral characteristics and the ability of certain cationic intermediates to gain stabilization by means of hyperconjugative interaction with C-Si bond is the major determinant for the tricycloheptanes to undergo rearrangement.

As a course of our study on chemical and phsical properties of valene-type isomers of cyclic conjugated systems, ⁴⁾ we report here a synthesis and some reactions of 1,2-bis(trimethylsilyl)-tropovalene (3).

Irradiation of a solution containing bis(trimethylsilyl)acetylene (5.07 g, 30 mmol) and 4-acetoxy-2-cyclopenten-1-one (0.125 g, 0.89 mmol) in 30 ml of acetone using a 450-W mercury lamp

through a Pyrex filter for 4 h, followed by chromatographic workup on alumina (10% water) afforded 1,2-bis(trimethylsilyl)tropovalene (3), pale yellow needles of mp 49-50°C, and 1,7-bis(trimethylsilyl)bicyclo[3.2.0]hepta-3,6-dien-2-one (4), colorless liquid, IR (CHCl₃) 1675, 1255, 845 cm⁻¹,

H NMR (δ , CDCl₃) 0.06 (s, 9H), 0.07 (s, 9H), 3.76 (dd, 1H, H-5, J_{4,5}=3.0, J_{5,6}=1.0 Hz), 6.08 (d, 1H, H-3, J_{3,4}=5.5 Hz), 6.87 (d, 1H, H-6, J_{5,6}=1.0 Hz), 7.51 (dd, 1H, H-4, J_{3,4}=5.5, J_{4,5}=3.0 Hz), in 50 and 10% yields, respectively.

Spectral data of 3 are summarized in Tables 1 and 2, being compared with those of the parent tropovalene 1. As can be seen from these Tables, the characteristic features noted for 3 are (i) lower frequency shift of the carbonyl stretching band, (ii) increase in intensity of $n-\pi^*$ absorption band, (iii) slight downfield shift of the chemical shift of C_3 , as compared with those values observed for 1. Although inspection of Dreiding models indicates that C_2 -Si bond of 3 lies in a same plane with the carbonyl group, these results are explicable by the electron donating inductive effect of the trimethylsilyl group. 5

In contrast to the parent tropovalene 1 which is isomerized into tropone on irradiation, 3 was converted to 4 in 25% isolated yield when irradiated in acetone with a 100-W high pressure Hg lamp through a Pyrex filter. The same isomerization could be attained in quantitative yield through reaction of 3 with silver perchlorate, magnesium chloride, or p-toluenesulfonic acid. However, dramatic difference exists between silver perchlorate and rhodium dicarbonyl chloride dimer, $[Rh(C0)_2C1]_2$. Thus, when 3 was treated with the rhodium catalyst in chloroform two tropone derivatives 5 and 6 in addition to 4 were obtained in 90% yield in a ratio of 9:1:1. The structure of 5 and 6 was rigorously established spectroscopically. The IR spectra of both 5 and 6 showed characteristic absorption at 1610, 1580, 1565 cm⁻¹ and 1610, 1575 cm⁻¹, respectively. The 1 H NMR spectrum of 5 had absorptions at 6 7.47 (d, 1H, J=0.5 Hz) and 6 6.85-7.30. NMR shift reagent allows for positive identification of the isomers.

While the reaction pathways leading to $\frac{4}{5}$ and $\frac{5}{5}$ are seemingly in line with those of other bicyclo[1.1.0]butane derivatives, the formation of $\frac{6}{5}$ could not be explained in analogous fashion. Deuterium labeling was used to verify mechanistic assignment. When isomerization of the labeled

	1,	3.		
IR $v_{c=o}$ (CHC1 ₃) UV λ_{max} (EtOH) (hexane)	1670 cm ⁻¹ 253 nm (ε 4300), 341 (75)	1650 cm ⁻¹ 283 (1750), 354 (97) 272 (1900), 368 (58)		

Table 1. Ir and Uv Spectral Data for 1 and 3.

Table 2. $^{13}\text{C-}$ and $^{1}\text{H-Nmr}$ Spectral Data for $\frac{1}{2}$ and $\frac{3}{2}$.

	13 _C -	·NMR ^a)	1 _{H-NMR} a)			
	ļ	3.	l.		3.	
Position	δ (J _{C-H}) ^{b)}	δ (J _{C-H}) ^{b)}	δ (mult.)	J (Hz)	δ (mult.)	J (Hz)
1	29.9 (215)	41.4	3.35 (t)	J _{1,2} =2.5		
2	49.7 (162)	51.3	2.72 (dtd)	J _{2,7} =2.5		
3	195.6	200.0		J _{1,6} =2.5		
4	121.8 (167)	120.0 (168)	5.46 (dt)	J _{6,7} =2.5	5.25 (dd)	J _{6,7} =2
5	149.5 (160)	149.0 (159)	7.00 (dd)	J _{2,6} =4.0	6.92 (dd)	J _{5,6} =5
6	33.3 (162)	37.8 (159)	2.55 (m)	J _{5,6} =4.0	2.14 (ddd)	J _{4,6} =1
7	29.9 (215)	42.7 (210)	3.35 (t)	J _{4,5} =10.0	3.56 (d)	J _{4,5} =10
SiMe ₃		-1.29 (120)			0.07 (s)	-
J		0.00 (120)			0.15 (s)	

- a) Chemical shifts are recorded in δ downfield from TMS.
- b) Coupling constants with directly bonded hydrogens are given in parentheses in Hz.

$$(CH_3)_3Si \longrightarrow (CH_3)_3Si \longrightarrow (CH$$

tropovalene \mathfrak{Z} - \mathfrak{d}^6) was carried out with the rhodium catalyst, the tropone \mathfrak{G} - \mathfrak{d} obtained was found to be 3-deuterated 2,7-bis(trimethylsilyl)tropone as revealed by its 1 H NMR spectrum in which the peaks at lower half of an AA'BB' system were diminished in intensity. Although the precise mechanism for the formation of \mathfrak{G} is not clear, the deuterium labeled experiment suggested that the 2,5-norborna-

dien-7-yl cation 7 seemed to be one plausible intermediate. Thus, the formation of 6 from 3 can be rationalized by coordination of the metal at the carbonyl oxygen and ring opening with bicyclobutane participation to give 7 which undergoes successive cationic rearrangement⁷⁾ with loss of a metal to produce 6-d as shown in the following scheme.¹⁰⁾

REFERENCES AND NOTES

- 1) H. Prinzbach, H. Babsch, and H. Fritz, Tetrahedron Lett., 2129 (1976).
- 2) Y. Sugihara, N. Morokoshi, and I. Murata, Tetrahedron Lett., 3887 (1977).
- 3) R. T. Taylor and L. A. Paquette, J. Org. Chem., 43, 242 (1978).
- 4) I. Murata and K. Nakasuji, Tetrahedron Lett., 47 (1973); I. Murata, K. Nakasuji, and H. Kume, ibid., 3401, 3405 (1973); I. Murata, T. Tatsuoka, and Y. Sugihara, ibid., 4261 (1973); idem., Angew. Chem., 86, 161 (1974); C. Kabuto, T. Tatsuoka, I. Murata, and Y. Kitahara, Angew. Chem., 86, 738 (1974); I. Murata, T. Tatsuoka, and Y. Sugihara, Tetrahedron Lett., 199 (1974); I. Murata, T. Nakazawa, M. Kato, T. Tatsuoka, and Y. Sugihara, ibid., 1647 (1975); T. Tatsuoka and I. Murata, Bull. Chem. Soc. Jpn., 49, 825 (1976); M. Uyegaki, S. Ito, Y. Sugihara, and I. Murata, Tetrahedron Lett., 4473 (1976).
- 5) W. K. Musher and G. L. Larson, *J. Organomet. Chem.*, <u>6</u>, 627 (1966); idem., *J. Org. Chem.*, <u>31</u>, 4237 (1966).
- 6) The labeled tropovalene 3-d was prepared from 4-acetoxy-2-cyclopenten-1-one-5-d₂ as with the unlabeled material.
- 7) Rearrangement of tricyclo[$4.1.0.0^{2,7}$]hept-3-en-5-yl cation to the 2,5-norbornadien-7-yl cation⁸⁾ and its conversion to the tropylium ion⁹⁾ are well docummented.
- 8) H. Volz, J-H. Shin, H. Prinzbach, H. Babsch, and M. Christl, Tetrahedron Lett., 1247 (1978).
- 9) R. K. Lustgarten, M. Brookhart, and S. Winstein, J. Am. Chem. Soc., 94, 2347 (1972).
- 10) The activation energy for the pyrolysis of 1 in pyridine-d₅ was found to be 29.8 kcal/mol suggesting the presence of a biradical intermediate. 11) In order to clarify the effect of trimethylsilyl substitution, pyrolysis of 3 was carried out. The reaction took place immediately, however, none of the products could be identified.
- 11) N. J. Turro, V. Ramamurthy, R. M. Pagni, and J. A. Butcher, Jr., J. Org. Chem., 42, 92 (1977).

(Received April 24, 1979)